Preprocessing Input Data for Machine Learning by FCA

نویسنده

  • Jan Outrata
چکیده

The paper presents an utilization of formal concept analysis in input data preprocessing for machine learning. Two preprocessing methods are presented. The first one consists in extending the set of attributes describing objects in input data table by new attributes and the second one consists in replacing the attributes by new attributes. In both methods the new attributes are defined by certain formal concepts computed from input data table. Selected formal concepts are so-called factor concepts obtained by boolean factor analysis, recently described by FCA. The ML method used to demonstrate the ideas is decision tree induction. The experimental evaluation and comparison of performance of decision trees induced from original and preprocessed input data is performed with standard decision tree induction algorithms ID3 and C4.5 on several benchmark datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Machine Learning methods and applications using Formal Concept Analysis

Machine learning (ML) deals with algorithms that automatically improve with experience where the experience for a ML algorithm is huge repositories of data. Machine learning methods produce a program that fits data to a model from lots of examples that specify the correct output for a given input. Formal Concept Analysis (FCA) is a successful model of learning from positive and negative example...

متن کامل

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification

Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...

متن کامل

Extracting Decision Trees from Interval Pattern Concept Lattices

Formal Concept Analysis (FCA) and concept lattices have shown their effectiveness for binary clustering and concept learning. Moreover, several links between FCA and unsupervised data mining tasks such as itemset mining and association rules extraction have been emphasized. Several works also studied FCA in a supervised framework, showing that popular machine learning tools such as decision tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010